L'IMPACT DES PRATIQUES AGRICOLES EN SYSTÈME BIOLOGIQUE ET CONVENTIONNEL SUR LES CHAUVES-SOURIS : zoom sur la réduction du travail du sol et de l'usage d'herbicides

CESCO UMR7204 (MNHN) - kevin.barre@mnhn.fr

Isabelle LEVIOL, Romain JULLIARD, François CHIRON & Christian KERBIRIOU

îlede**France**

- Cropland take up $\sim 25\%$ of Europe area

- Cropland take up $\sim 25\%$ of Europe area

- Used by bats in the same way that other habitats

Roeleke et al. 2016, Scientific reports

- Cropland take up $\sim 25\%$ of Europe area

- Used by bats in the same way that other habitats
- Sensitive to practice changes
 (conv. → organic)

- Cropland take up $\sim 25\%$ of Europe area

- Used by bats in the same way that other habitats
- Sensitive to practice changes
 (conv. → organic)
- Sex-dependant effect

Roeleke et al. 2016, Scientific reports

- Excellent potential as bioindicators (Jones et al. 2009)
- Provide ecosystem services as apex predators

Maine & Boyles 2015, PNAS

- Excellent potential as bioindicators (Jones et al. 2009)
- Provide ecosystem services as apex predators

The worth of insectivorous bats. Estimated annual value of insectivorous bats in the agricultural industry at the county level. Values (×\$1000 per county) assume bats have an avoided-cost value of ~\$74/acre of cropland (12). (See SOM for details.)

Boyles et al. 2011, Science

 Farming intensification is a major concern compared to other threats (study at national scale in France)

 Farming intensification is a major concern compared to other threats (study at national scale in France)

More negative effect than impervious surfaces and light pollution

Azam et al. 2016, Landscape Ecology

- Adverse conservation status (example for one of the most common bat species *Pipistrellus pipistrellus*)

Kerbiriou et al. 2015, Wildlife Research

Kerbiriou et al. 2015, Symbioses

- Adverse conservation status (example for one of the most common bat species *Pipistrellus pipistrellus*)

 No studies on farming practice features and bats, only 2 conventional vs. organic large comparisons

Reference

Barré K., Le Viol I., Julliard R., Chiron F. & Kerbiriou C. (2018). Tillage and herbicide reduction mitigate the gap between conventional and organic farming effects on foraging activity of insectivorous bats. *Ecology and Evolution* (In press)

A small farming landscape in Ile-de-France region, one of the most productive of France

Reminder on soil management possibilities

Reminder on soil management possibilities

Presentation of farming systems studied

Superficial tillage ↔

Presentation of farming systems studied on wheat fields

Sampling design

Contiguous/close

fields

0 0

0

Ô

3 km

Sampling design

Contiguous/close

fields

0 0

000

Sampling points inside

Ó

fields: edge effects

diminution

3 km Recording points

Organic farming

Organic tillage fields (OT)

Conventional farming

Mechanical conservation tillage fields (MCT)

Mechanical and herbicide conservation tillage fields (MHCT)

Conventional tillage (T)

Sampling design

Simultaneous recordings

of all systems in June

0 0

000

3 km

Sampling design

0

3 km Simultaneous recordings

of all systems in June:

1st night

Sampling design

0

3 km 0

Simultaneous recordings

of all systems in June:

2nd night

Sampling design

0

3 km 000

Etc... during 1 week on 64 points using automatic recorders (SM2bat)

Sampling design

3 km Etc... during 1 week on 64 points using automatic recorders (SM2bat)

0

Statistical approach

Generalized linear mixed models Species ~ systems + environmental covariables + (1| night)

Statistical approach

Generalized linear mixed models

Species \sim systems + environmental covariables + (1| night)

Statistical approach

Generalized linear mixed models Species ~ systems + environmental covariables + (1| night) Multi-model inference based on AICc

Statistical approach

Generalized linear mixed models Species ~ systems + environmental covariables + (1| night) \downarrow Multi-model inference based on AICc \downarrow Averaging on delta AICc < 2

Statistical approach

Generalized linear mixed models Species \sim systems + environmental covariables + (1| night) Multi-model inference based on AICc *Averaging on delta AICc < 2* Checking for best and full models :

A dispersion ratio between

0.75 and 1.4

Statistical approach

All Pipistrellus ssp.

Affect development cycle of

Diptera? (70-100% of the

Pipistrellus ssp. diet)

Same pattern for P. pipistrellus, P. kuhlii and richness

No effects for high-flying species (P. nathusii and Nyctalus ssp.)

Summary

- Bat activity in wheat far from every structuring and highattractive habitat

Summary

- Bat activity in wheat far from every structuring and highattractive habitat
- Mitigation possibilities of conventional to organic gap for bats without impact yields (identical in 3 conv. systems)

Summary

- Bat activity in wheat far from every structuring and highattractive habitat
- Mitigation possibilities of conventional to organic gap for bats without impact yields (identical in 3 conv. systems)
- Organic farming (in arable crops) only take up 5% in France : we can easily act on the remaining area and leave productivity and profitability intact

LETTERS PUBLISHED: 1 MARCH 2017 | VOLUME: 3 | ARTICLE NUMBER: 17008

Reducing pesticide use while preserving crop productivity and profitability on arable farms

Martin Lechenet^{1,2}*, Fabrice Dessaint², Guillaume Py¹, David Makowski^{3†} and Nicolas Munier-Jolain^{2†}*

SCIENTIFIC REPORTS

OPEN Herbicides do not ensure for higher wheat yield, but eliminate rare plant species

Received: 21 March 2016 Sabrina Gaba^{1,2}, Edith Gabriel¹, Joël Chadœuf⁴, Florent Bonneu³ & Vincent Bretagnolle^{2,5} Accepted: 29 June 2016

Next step

Identification of soil arthropods sampled simultaneously (Barber trap) to study these effects on all trophic levels

Farming systems	Chronology of interventions							
	July	August	September	October	March	April	May	June
Organic farming								
Organic tillage (OT)	Harvest	Harrowing	Tillage + smoothing	Sowing	Mechanical weed	Mechanical weed	Ø	Mechanical weed
Conventional farming					1			
Mechanical conservation tillage (MCT)	Harvest	Harrowing	Decompaction	Sowing + herbicide (x1)	Herbicide (x1)	Fungicide (x1)	Fungicide (x1)	Fungicide (x2)
Mechanical and herbicide conservation tillage (MHCT)	Harvest	Harrowing	Decompaction + Herbicide (x1)	Sowing + herbicide (x1)	Herbicide (x1)	Fungicide (x1)	Fungicide (x1)	Fungicide (x2)
Conventional tillage (T)	Harvest	Harrowing	Tillage + smoothing	Sowing + herbicide (x1)	Herbicide (x1)	Fungicide (x1)	Fungicide (x1)	Fungicide (x2)

II - Method

Identification of acoustic data (unit= bat passes of 5 seconds): TADARIDA open source project

Toolbox for Animal Detection on Acoustic Recordings Integrating Discriminant Analysis, developed by Yves Bas

Data base

https://github.com/yvesbas